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Abstract

During the liquid-encapsulated Czochralski (LEC) process, a single compound semiconductor crystal such as gallium-antimonide is
grown by the solidification of an initially molten semiconductor (melt) contained in a crucible. The motion of the electrically-conducting
molten semiconductor can be controlled with externally-applied magnetic fields. A steady magnetic field provides an electromagnetic sta-
bilization of the melt motion during the LEC process. With a steady axial magnetic field alone, the melt motion produces a radially-inward
flow below the crystal–melt interface. Recently, an extremely promising flow phenomenon has been revealed in which a rotating magnetic
field induces a radially-inward flow below the crystal–melt interface that may significantly improve the compositional homogeneity in the
crystal. This paper presents a model for the melt motion during the LEC process with steady and rotating magnetic fields.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Semiconductor crystal growth; Numerical modelling; Magnetic fields; Electromagnetic stirring; Liquid encapsulated Czochralski method;
Single crystal growth
1. Introduction

Bulk gallium-antimonide (GaSb) semiconductor crys-
tals with high optical transmission are extremely impor-
tant for space-based imaging applications. Bulk
gallium-antimonide crystals can be grown from the melt
by the liquid-encapsulated Czochralski (LEC) process. A
major objective during the growth of a semiconductor
crystal is to minimize the segregation in the crystal. Since
molten semiconductors are excellent electrical conduc-
tors, externally-applied magnetic fields can be used to
control the melt motion in order to control the dopant
distribution in the crystal, which depends on the convec-
tive and diffusive transport of the dopant in the melt.
Convective transport in the melt may lead to (i) small-
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scale spatial oscillations of the crystal’s dopant composi-
tion, which are called striations or microsegregation,
and/or (ii) large-scale variations of the crystal’s dopant
composition, which are called radial and axial macro-
segregation.

During the bulk growth of semiconductor crystals with-
out a steady magnetic field, the buoyant convection in the
melt is often periodic, or even turbulent in very large sys-
tems. Unsteady melt motions lead to fluctuations in the
heat transfer across the growth interface from the melt to
the crystal. Since the local rate of crystallization depends
on the balance between the local heat fluxes in the melt
and crystal, fluctuations in the heat flux from the melt cre-
ate fluctuations in the local growth rate. In extreme circum-
stances, periods of growth alternate with periods of
remelting. Fluctuations in the local growth rate cause two
major problems. First, these fluctuations are a major cause
of dislocations in the crystal (Kuroda et al., 1984). Another
major cause of dislocations is the thermal stresses in the
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crystal. Second, the fluctuations in the local growth rate
create striations in the crystal. Most dopants are either
rejected into the melt during solidification or preferentially
absorbed into the crystal, i.e. ks < 1 or ks > 1, respectively,
where the segregation coefficient ks is the ratio of the local
dopant concentration in the crystal to that in the melt at
any point along the crystal–melt interface. If ks < 1, the
rejected dopant accumulates in a species-diffusion bound-
ary layer in the melt adjacent to the interface. The dopant
distribution in this layer involves a balance between the
rejection rate and the rate of diffusion through the melt.
During a fluctuation in the local growth rate, an increase
in growth rate causes the local concentration to rise
because dopant cannot diffuse away fast enough, so that
a region with a high dopant concentration solidifies. When
the growth rate decreases for the second half of the fluctu-
ation, dopant has ample time to diffuse away, so the con-
centration that solidifies is low. Fluctuations in the melt
velocity also convect dopant in and out of the species-dif-
fusion boundary layer or radially within this layer, leading
to more severe striations.

A steady magnetic field produced by a solenoid placed
around the crystal-growth furnace can be used to stabilize
the melt in order to eliminate all periodicity in the melt
motion and to eliminate striations produced by unsteady
melt motions (Walker et al., 2002). Without a steady mag-
netic field, transitions from steady, axisymmetric melt
motions to the periodic or even turbulent non-axisymmetric
melt motions which produce striations depend upon the
ratio of the driving buoyancy force to viscous dissipation,
as reflected by the Rayleigh or Grashof number. With a
steady moderate magnetic field, both viscous and Joulean
dissipations oppose the driving buoyancy force and stabilize
the flow through electromagnetic (EM) damping. Bliss et al.
(1991, 1993) were the first to produce 8-cm diameter twin-
free indium-phosphide crystals by using magnetic stabiliza-
tion. Li et al. (2006) provided numerical predictions of ther-
mal stress in the crystal during the LEC process and found
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Fig. 1. Liquid-encapsulated Czochralski crystal growth with a uniform stead
and with coordinates normalized by the crucible’s inner radius.
that the crystal’s thermal stress increases as the magnetic
field strength increases.

Unfortunately, crystal growth in a steady magnetic field
alone produces crystals with relatively severe dopant segre-
gation because there is a radially-inward flow just below
the crystal–melt interface (Morton et al., 2002; Morton
et al., 2003; Yang et al., 2005). Morton et al. (2002) indi-
cated that the radial and axial segregation decreases as
the magnetic field strength decreases. This occurs because
the magnitude of the radially-inward flow below the crys-
tal–melt interface increases as the magnetic field strength
decreases. A means to tailor the melt motion in order to
increase the radially-inward flow below the crystal–melt
interface may achieve both radial and axial uniformity in
the crystal. Recent experiments have shown that certain
periodic, transverse magnetic fields, called rotating mag-
netic fields (RMFs), produce better crystals with less segre-
gation (Salk et al., 1994; Fiederle et al., 1996). An RMF is a
transverse magnetic field with a fixed spatial pattern which
rotates at an angular velocity around the vertical centerline
of the crucible. An RMF is produced by connecting a num-
ber of inductors at equally-spaced azimuthal positions to
the successive phases of a multiphase AC power source.
Since a steady magnetic field is needed in order to stabilize
the melt motion, an RMF would be superimposed on the
steady magnetic field. To date, there has been one study
which investigated combining an RMF and a uniform,
axial, steady magnetic field by presenting a numerical solu-
tion for a liquid-metal flow in a fixed cylinder (Mossner
and Gerbeth, 1999). Witkowski et al. (1999) and Walker
et al. (2004) modelled the flow of electrically-conducting
fluids in a vertical cylinder. Walker (1999) reviewed the
use of steady magnetic fields during crystal growth while
Dold and Benz (1999) reviewed the use of rotating mag-
netic fields during crystal growth. In the present paper,
we treat the buoyant convection and crystal-growth flow
during the LEC process in the presence of both steady
and rotating magnetic fields.
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Fig. 2. Temperature in the melt when 50% of the crystal has grown for
c = 0.4 and b = 0.3174.
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2. Temperature

This paper treats the unsteady, axisymmetric transport
of a gallium-antimonide melt during the liquid-encapsu-
lated Czochralski process with an externally-applied,
steady, uniform, axial magnetic field Bstẑ and with an exter-
nally-applied, rotating, transverse magnetic field Brotx̂, as
shown in Fig. 1. Here, Bst and Brot are the flux densities
of the steady and rotating magnetic fields, respectively,
and r̂, ĥ and ẑ are the unit vectors for the cylindrical coor-
dinate system while x̂, ŷ and ẑ are the unit vectors for the
Cartesian coordinate system. The coordinates and lengths
are normalized by the crucible’s inner radius R, so that c
is the dimensionless crystal radius, and b(t) is the dimen-
sionless depth of the melt. This study uses the bulk approx-
imation which assumes that the crystal–melt and
encapsulant–melt interfaces lie in the same horizontal plane
at z = b(t) = b0 � ac2t, where t is time normalized with R/
Ub. Here, b0 is the initial dimensionless melt depth and the
dimensionless crystal-growth velocity a = Ug/Ub is the sum
of the velocity at which the crystal is moved upward and
the velocity at which the crystal–melt interface moves
downward. Here, Ub is the characteristic velocity of the
melt while Ug is the crystal-growth velocity.

Before solidification begins, gallium and antimony are
heated in the crucible and the elements fuse to form the
compound GaSb. A layer of salt, which is composed of a
mixture of 50% sodium-chloride (NaCl) and 50% potas-
sium chloride (KCl), encapsulates the melt. A single crystal
seed is lowered through the liquid salt mixture which initi-
ates solidification. Once the crystal has grown to the
desired diameter, the crystal is pulled vertically upward at
a rate which maintains this diameter. The melt is housed
by a fused-silica crucible which is structurally supported
by a graphite susceptor as shown in Fig. 1.

The melt velocity is normalized by the characteristic
velocity for magnetically damped buoyant convection
(Hjellming and Walker, 1987)

Ub ¼
qgbðDT Þc

rB2
st

; ð1Þ

where g = 9.81 m/s2 and (DT)c is the characteristic temper-
ature difference in the melt. Here, q, r and b are the melt’s
density at the solidification temperature Ts, the melt’s elec-
trical conductivity and the melt’s thermal volumetric
expansion coefficient, respectively. The crystal–melt inter-
face moves at a constant dimensionless velocity a, and
the dimensionless time to grow the entire crystal is b0/ac2

if the entire melt is solidified.
The temperature is governed by

Pet

oT
ot
þ ðv � rÞT

� �
¼ r2T ; ð2Þ

where vðr; f; tÞ ¼ vr r̂þ vhĥþ vzẑ is the dimensionless veloc-
ity of the melt normalized by Ub, and T is the deviation of
the dimensional temperature from the solidification tem-
perature Ts normalized by (DT)c. In Eq. (2), the character-
istic ratio of the convective to conductive heat transfer is
the thermal Péclet number, Pet = qcpUbR/k, where cp is
the melt’s specific heat and k is the melt’s thermal conduc-
tivity. The thermal Péclet number decreases as B�2

st , so that
the ratio of the convective heat transfer to conductive heat
transfer decreases as the magnetic field strength increases.
Ma and Walker (2001) found that the error due to neglect
of convective heat transfer is less than 4% when Pet < 15.0
for which Bst > 0.20 T for the present process. Since,
Ug < Ub, the latent heat released by the cooling melt is neg-
ligible compared to the conductive heat transfer (Ma and
Walker, 1997). Therefore, only the conductive terms are in-
cluded in the present study.

We use the boundary conditions

oT
of
¼ �qbðr; tÞ at f ¼ �1; ð3aÞ

oT
or
¼ 1 at r ¼ 1; ð3bÞ

T ¼ 0 at f ¼ þ1 for 0 6 r 6 c; ð3cÞ
2

bðtÞ
oT
of
¼ �j0 at f ¼ þ1 for c 6 r 6 1; ð3dÞ

where qb(r, t) is the dimensionless heat flux into the melt
along the bottom crucible wall, and j0 is the dimensionless
heat flux lost due to conduction and radiation through the
semitransparent boron oxide. qb(r, t) and j0 are normalized
with (DT)ck/R. Here, f = �1 + 2z/b(t) is a rescaled axial
coordinate so that �1 6 f 6 +1 for all time. An estimate
of the thermal losses through the semi-transparent encaps-
ulant (Dupret et al., 1990) give j0 = 1.2.

In the present study, we treat the thermal problem with
uniform side heating and with parabolically-varying bot-
tom heating which varies over time so that 0 6 T(r,f, t) 6 1
for all stages of growth. For LEC growth, the bottom heat-
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ing is estimated by a quadratic form given by (Morton
et al., 2002)

qbðr; tÞ ¼ h½bðtÞ�r2; ð4Þ

where h[b(t)] = 0.890b + 0.369b2 � 5.984b3 + 7.334b4 �
3.273b5.

We use a Chebyshev spectral collocation method to
solve for the temperature governed by Eqs. (2) and (3) with
Gauss–Lobatto collocation points in r and f. A regulariza-
tion method is implemented to avoid Gibbs phenomena
associated with the discontinuous boundary condition at
r = c and f = +1. Typical isotherms are presented in
Fig. 2 for c = 0.4 and b = 0.3174, which correspond to
50% of growth.
Fig. 3. Magnitude of the azimuthal EM body force per unit volume due to
the RMF in the melt Srot(r,f) when 50% of the crystal has grown for
b = 0.3174.
3. Melt motion

We apply a rotating magnetic field (RMF) with a fre-
quency f = 60 Hz and with one pair of magnet poles for
which m = 1. This spatially-uniform, transverse, rotating
magnetic field produces an essentially constant magnetic-
field pattern which rotates in the azimuthal direction
around the vertical centerline of the melt with an angular
velocity x/m, where x is the circular frequency of the elec-
tric power source. An RMF actually produces a periodic,
non-axisymmetric body force in addition to the steady, axi-
symmetric, azimuthal body force but the frequency of the
non-axisymmetric body force is 2mf, and the inertia of
the melt precludes any response such a high-frequency
oscillatory body force (Witkowski et al., 1999).

The EM body force per unit volume S* created by the
externally-applied steady and rotating magnetic fields is

S� ¼ ðj�st � BstẑÞ þ ðj�rot � Brotx̂Þ þ ðj�st � Brotx̂Þ þ ðj�rot � BstẑÞ;
ð5Þ

where j�st is the electric current density induced by the static
magnetic field and j�rot is the electric current density induced
by the rotating magnetic field. In Eq. (5), the last two terms,
i.e., the electromagnetic body forces created by j�st and the
rotating magnetic field and by j�rot and the static magnetic
field, are negligible compared with the first two terms
(Mossner and Gerbeth, 1999). In present study, we neglect
these two terms. An externally-applied RMF is given by

Brotx̂ ¼ Bx½cosðh� xtÞr̂� sinðh� xtÞĥ�; ð6Þ

where Bx is the amplitude of the strength of the rotating
magnetic field and t is time normalized by R/Ub.

The electric current in the melt produces an induced
magnetic field which is superimposed upon the externally-
applied magnetic fields. The characteristic ratio of the
induced to steady magnetic field strength is the magnetic
Reynolds number, Rm = lprUbR, where lp is the magnetic
permeability of the melt. The characteristic ratio of the
induced magnetic field to the rotating magnetic field is
the shielding parameter, Rx = lprxR2. For all crystal-
growth processes from the melt, both Rm� 1 and
Rx� 1, so that the additional magnetic fields produced
by the electric currents in the melt are negligible. These
effects may be important during liquid phase diffusion
growth (Yildez et al., 2006).

With the Boussinesq approximation, the equations gov-
erning the three-dimensional axisymmetric melt motion are

1

N
ov

ot
þ ðv � rÞv

� �
¼ �rpþ T ẑþ Sst þ

T mPr

Ra
Srot þ

1

Ha2
r2v;

ð7aÞ
r � v ¼ 0; ð7bÞ

where p is the deviation of the dimensional pressure from
the hydrostatic pressure normalized by rB2

stUbR, and T is
given by a solution to Eqs. (2) and (3). In Eq. (7a), the
characteristic ratio of the EM body force induced by the
steady field to the inertial force is the interaction parame-
ter, N = rBstR/qUc, while the square root of the character-
istic ratio of the EM body force induced by the steady field
to the viscous force is the Hartmann number, Ha = BstR(r/
l)1/2. The characteristic ratio of the EM body force in-
duced by the RMF to the EM body force induced by the
steady field is TmPr/Ra, where the magnetic Taylor number
is T m ¼ qrxB2

xR4=l2, the Prandtl number is Pr = lcp/k,
and the Rayleigh number is Ra = gq2cpb(DT)R3/lk. The
EM body forces per unit volume due to the steady field
and due to the rotating field normalized by rU bB2

st are Sst

and Srot, respectively. For electrically-insulating bound-
aries, these forces are given by

Sst ¼ �vr r̂� vhĥ; ð8aÞ

Srot ¼
r
2
�
X1
n¼1

J 1ðknrÞ cosh b
2
knf

� �
ðk2

n � 1ÞJ 1ðknÞ cosh b
2
kn

� �
" #

ĥ; ð8bÞ

where Jk is the Bessel function of the first kind and kth or-
der, and kn are the roots of knJ0(kn) � J1(kn) = 0. Eq. (8b)
was originally derived by Witkowski et al. (1999). In



Table 1
Thermophysical properties of molten gallium antimonide (GaSb)

Property Value Units

Density 6030 kg/m3

Dynamic viscosity 0.00231 Pa s
Thermal conductivity 17.1 W/m K
Specific heat 328 J/kg K
Thermal volumetric expansion coefficient 0.0000958 K�1

Electrical conductivity 1 · 106 S/m
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Fig. 3, we present contours of the magnitude of the azi-
muthal EM body force due to the RMF given by Eq.
(8b) when 50% of the crystal has grown for b = 0.3174.
The maximum value occurs at r = 1 and f = 0, and de-
creases as r decreases and as jfj increases. In Fig. 3, the
maximum value is 0.061932.

We introduce a Stokes streamfunction for the radial and
axial velocities in the meridional circulations

vr ¼
2

b
1

r
ow
of
; vz ¼ �

1

r
ow
or
; ð9a; 9bÞ

which identically satisfies conservation of mass (7b) for our
axisymmetric melt motion. The boundary conditions along
the crystal–melt and encapsulant–melt interfaces are

w ¼ � 1

2
að1� c2Þr2 at f ¼ þ1 for 0 6 r 6 c; ð10aÞ

w ¼ � 1

2
ac2ð1� c2Þr2 at f ¼ þ1 for c 6 r 6 1: ð10bÞ

During crystal growth, experiments indicate that the liquid
salt mixture has an unstable or even turbulent flow. We be-
lieve that this occurs because the encapsulant has a very
small viscosity compared with that of the melt and because
the thermocapillary convection driven by the surface ten-
sion’s temperature along the interface is negligible com-
pared to the other melt motions for growth in a steady
magnetic field (Yang and Ma, 2005a,b; Farrell and Ma,
2002). Therefore, we treat the encapsulant–melt interface
as a free surface.

In the melt, there are three mechanisms that drive flow,
which are (a) the EM stirring induced by the RMF, (b) the
buoyant convection, and (c) the melt-depletion or crystal-
growth flow. (a) The azimuthal EM body force due to
the RMF induces an azimuthal melt motion. The axial var-
iation of the centrifugal force due to the azimuthal velocity
induces a secondary flow in the meridional plane with
radial and axial velocity components, vr and vz, respec-
tively, which we refer to as the meridional melt motion.
The EM stirring alone would be symmetric about the
mid-height at f = 0, and would induce a clockwise circula-
tion for f < 0 and a counterclockwise circulation for f > 0.
The clockwise circulation would provide a radially-inward
flow below the encapsulant–melt and crystal–melt inter-
faces. (b) Since the melt is heated along its side and bottom,
the buoyant convection alone would have a single counter-
clockwise circulation with radially-inward flow below the
interfaces. (c) In a reference frame moving with the cruci-
ble, the fluid along the encapsulant–melt interface moves
downward at a rate �db/dt while the fluid along the crys-
tal–melt interface moves vertically upward at the pull
velocity (Morton et al., 2001), driving a melt motion which
is referred to as the melt-depletion flow. This terminology
arises because the crystal–melt interface acts as a porous
boundary condition. This flow alone would be radially-
inward everywhere with axially-downward flow below the
encapsulant–melt interface and axially-upward flow below
the crystal–melt interface. Each of these three flows pro-
duces a radially-inward flow below the crystal–melt
interface.

The steady magnetic field provides an EM damping of
the radial and azimuthal velocities, as reflected by Eq.
(8a). When the electrically-conducting melt flows radially
or azimuthally across the steady vertical magnetic field, it
generates an induced electric field which drives an azi-
muthal electric current or a radial electric current, respec-
tively. The azimuthal and radial electric currents flow
across the steady magnetic field lines, creating an EM body
force which opposes the radial and azimuthal velocities.
There is no EM body force opposing flow along steady
magnetic field lines.

Therefore, in the present study, we investigate a combi-
nation of steady and rotating magnetic fields for which the
flow is three dimensional, axisymmetric and stable. Kakim-
oto (2002) investigate instability of the non-axisymmetric
three-dimensional flow during the Czochralski growth of
silicon crystals with an RMF and without a steady mag-
netic field.

We use a Chebyshev spectral collocation method with
Gauss–Lobatto collocation points to solve Eqs. (7a) and
(7b) with Eqs. (10a) and (10b) along f = +1, and the no-
slip and no-penetration conditions along the crucible’s
walls. For the time derivative in Eq. (7a), we use a sec-
ond-order implicit time integration scheme from t = 0 to
a t which is slightly less than b0/ac2. A regularization
method is implemented to avoid Gibbs phenomena associ-
ated with the discontinuous boundary condition at r = c
and f = +1. The initial condition at t = 0 is given by a solu-
tion to Eqs. (7a) and (7b) without the time derivative in Eq.
(7a), which is solved using a Newton–Raphson iterative
procedure.
4. Results

We present results for several combinations of steady
and rotating magnetic fields. For a typical process,
R = 4.7 cm, (DT)c = 20 K and Ug = 5.55556 · 10�6 m/s.
For gallium antimonide, Pr = 0.0443087 and Ra =
5.88992 · 105. The thermophysical properties for gallium
antimonide and the system parameters are summarized
in Tables 1 and 2, respectively. Under these condi-
tions, Ub ¼ 1:13301� 10�4B�2

st , a ¼ 0:0490336B2
st, N ¼

68793:4B4
st, Ha = 977.894Bst, and T m ¼ 2:07882� 1012B2

x

with Bst and Bx in Tesla. The characteristic ratio of the



Fig. 4. Azimuthal velocity in the melt vh(r,f, 161.83) when 50% of the
crystal has grown for Bst = 0.5 T and Bx = 0.01 T.

Fig. 5. Streamlines in the melt w(r,f, 161.83) when 50% of the crystal has
grown for Bst = 0.5 T and Bx = 0.01 T.

Table 2
System parameters for liquid-encapsulated Czochralski crystal growth

Parameter Value Units

Inner crucible radius, R 4.7 cm
Crystal radius, cR 1.88 cm
Growth rate, Ug 5.556 · 10�6 m/s
Initial melt depth, boR 2.98 cm
Characteristic temperature difference, (DT)c 20 K
Frequency of the RMF, f 60 Hz
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EM body force induced by the RMF to the EM body force
induced by the steady field is T mPr=Ra ¼ 1:56385� 105B2

x.
The characteristic velocities and dimensioness parameters
as a function of Bst and Bx are presented in Table 3.

We begin by discussing the effects of an applied RMF.
An RMF induces an azimuthal body force which drives a
primary flow in the azimuthal direction around the center-
line of the melt with an azimuthal velocity vh. This azi-
muthal EM body force Srot in shown in Fig. 3 for a melt
depth b = 0.3174 when 50% of the crystal has grown, for
example. The actual EM body force due to the RMF is
given by the product of Srot and TmPr/Ra. The axial vari-
ation of the centrifugal force due to the azimuthal velocity
induces a secondary flow in the meridional plane with
radial and axial velocity components, vr and vz, respec-
tively, which we refer to as the meridional melt motion.
In the absence of any other flows such as the buoyant con-
vection and the melt-depletion flows, the meridional melt
motion due to the EM stirring would be symmetric about
the mid-height at f = 0, would have a counterclockwise cir-
culation for f > 0 with radially-inward flow below the crys-
tal–melt and encapsulant–melt interfaces, and would have
a clockwise circulation for f < 0 with radially-inward flow
adjacent to the bottom of the crucible.

We investigate the effects of increasing Bx with
Bst = 0.5 T. For Bst = 0.5 T, the characteristic velocity is
Ub = 0.0004532 m/s and the dimensionless parameters are
N = 4,299.6, Ha = 488.95 and a = 0.012258. For
Bx = 0.01 T, Tm = 2.0788 · 108 and TmPr/Ra = 15.639.
We present contours of the azimuthal velocity and the
streamfunction in the melt for b = 0.3174 when 50% of
the crystal has grown in Figs. 4 and 5, respectively. In
Fig. 4, the maximum value of vh is 1.62944 and occurs near
r = 1 and at f = 0. This relatively weak RMF and corre-
sponding azimuthal velocity has a small effect on the
meridional melt motion. In Fig. 5, the minimum and max-
imum values of the streamfunction are �0.000823738 and
Table 3
Characteristic velocity and dimensionless parameters for liquid-encapsulated C

Bst (T) Bx (T) Ub (m/s) a H

0.5 0.01 0.0004532 0.012258 4
0.5 0.05 0.0004532 0.012258 4
0.5 0.10 0.0004532 0.012258 4
1.0 0.01 0.0001133 0.049034 9
1.0 0.05 0.0001133 0.049034 9
1.0 0.10 0.0001133 0.049034 9
0.0119152, respectively. This maximum value occurs near
r = 1 and for some value of f > 0. This minimum value is
due to the melt-depletion flow, as given by Eqs. (10a) or
(10b) at r = c. Just below the crystal–melt interface at
f = +1, the flow is dominated by the melt-depletion flow
as reflected by the �0.00028 and �0.00003 contours, as
shown in Fig. 4. Most of the melt is dominated by a
zochralski crystal growth in steady and rotating magnetic fields

a Tm Pr Ra

88.95 2.0788 · 108 0.0443087 5.88992 · 105

88.95 5.1970 · 109 0.0443087 5.88992 · 105

88.95 2.0788 · 1010 0.0443087 5.88992 · 105

77.89 2.0788 · 108 0.0443087 5.88992 · 105

77.89 5.1970 · 109 0.0443087 5.88992 · 105

77.89 2.0788 · 1010 0.0443087 5.88992 · 105



Table 4
Dimensional radial velocity in the melt below the crystal–melt interface v�r ðr; f ¼ 0:9999; t ¼ 161:83Þ versus r when 50% of the crystal has grown for
Bst = 0.5 T with Bx = 0.01 T, 0.05 T and 0.10 T in lm/s

r v�r ðr; 0:9999; 161:83Þ for Bx = 0.01 T v�r ðr; 0:9999; 161:83Þ for Bx = 0.05 T v�r ðr; 0:9999; 161:83Þ for Bx = 0.10 T

0.000000 0.0000 0.0000 0.0000
0.021053 0.8919 0.8430 0.1210
0.042105 �2.9304 �2.9957 �3.9931
0.063158 �2.3063 �2.4214 �4.1477
0.084211 �1.2943 �1.4634 �3.9873
0.105263 �5.0953 �5.2870 �8.1771
0.126316 �4.8198 �5.0663 �8.7730
0.147368 �3.5359 �3.8490 �8.5360
0.168421 �7.1932 �7.5426 �12.8015
0.189474 �7.5684 �7.9836 �14.2337
0.210526 �5.9134 �6.4173 �13.9717
0.231579 �9.1429 �9.7085 �18.2146
0.252632 �10.5931 �11.2439 �21.0380
0.273684 �8.6906 �9.4642 �21.0693
0.294737 �10.8560 �11.7365 �24.9568
0.315789 �13.6363 �14.6352 �29.6633
0.336842 �12.2532 �13.4229 �30.9876
0.357895 �12.4403 �13.7913 �34.0693
0.378947 �15.3272 �16.8618 �39.9292
0.400000 �15.8575 �17.6295 �44.2613
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counterclockwise circulation due to buoyant convection.
The flow is radially inward below the crystal–melt interface
and the dimensional radial velocity at f = 0.9999 is pre-
sented in Table 4.

For Bst = 0.5 T, we further increase the flux density of
the RMF to Bx = 0.05 T. For Bx = 0.05 T, Tm =
5.1970 · 109 and TmPr/Ra = 390.96, so that the relative
importance of EM body force due to the RMF to the
EM body force due to the steady field increases. For this
larger RMF, the contours of the azimuthal velocity are
very similar to those shown in Fig. 4, except that the values
are larger, with a maximum value equal to 40.7268. This
EM stirring has a much stronger effect on the meridional
melt motion. We present the meridional streamfunction
Fig. 6. Streamlines in the melt w(r,f, 161.83) when 50% of the crystal has
grown for Bst = 0.5 T and Bx = 0.05 T.
in Fig. 6, for which the minimum and maximum values
are �0.000823738 and 0.0189049, respectively. Since the
RMF alone would produce a counterclockwise circulation
for f > 0, the EM stirring augments the melt-depletion flow
and the buoyant convection so that the magnitude of the
radially-inward flow below the crystal–melt interface
increases, the location of the maximum value of w moves
vertically upward and the maximum value of w increases.
The radial velocity just below the crystal–melt interface
at f = 0.9999 is presented in Table 4 and has increased
for this larger value of Bx. The minimum value of w still
occurs due to the melt-depletion flow. Since the RMF
alone would produce a clockwise circulation for f < 0,
the EM stirring opposes the buoyant convection for f < 0
and becomes strong enough to induce a clockwise circula-
tion near r = 1 and f = �1, as shown in Fig. 6.

For Bst = 0.5 T, we further increase the flux density of
the RMF to Bx = 0.10 T. For Bx = 0.10 T, Tm =
2.0788 · 1010 and TmPr/Ra = 1563.8, and relative impor-
tance of the EM body force due to the RMF to the EM
body force due to the steady field further increases. For this
value of Bx, the maximum value of vh increases to 162.376.
The EM stirring due to the RMF has a much stronger
effect on the meridional melt motion, as shown in Fig. 7.
The magnitude of the radially-inward flow below the crys-
tal–melt interface increases significantly as shown in Table
4, and the maximum value of the streamfunction is much
larger with wmax = 0.165163. At r = c and f = +1, the
streamfunction is still equal to �0.000823738 but the min-
imum value now occurs in the lower clockwise circulation
with wmin = �0.149373.

We investigate the effects of increasing Bx with
Bst = 1.0 T. For Bst = 1.0 T, the characteristic velocity is
Ub = 0.0001133 m/s and the dimensionless parameters are



Fig. 7. Streamlines in the melt w(r,f,161.83) when 50% of the crystal has
grown for Bst = 0.5 T and Bx = 0.10 T.
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N = 68,793, Ha = 977.89 and a = 0.049034. This steady
field provides a much stronger EM damping of the flow
so that the RMF has a much weaker effect on the melt
motion. For Bx = 0.01 T, the azimuthal velocity is very
weak and the meridional melt motion resembles the melt
motion with a 1.0 T steady field alone (Morton et al.,
2002; Yang, 2006). For Bx = 0.01 T, the meridional melt
motion is dominated by the counterclockwise buoyant con-
vection except in an extremely thin region below the crys-
tal–melt interface where the melt motion is dominated by
the melt-depletion flow. We present the values for the
dimensional radial velocity in the melt just below the crys-
tal–melt interface at f = 0.9999 in Table 5. When we
increase Bx = 0.05 T, the RMF drives a stronger radially
Table 5
Dimensional radial velocity in the melt below the crystal–melt interface v�r ðr
Bst = 1.0 T with Bx = 0.01 T, 0.05 T and 0.10 T in lm/s

r v�r ðr; 0:9999; 40:46Þ for Bx = 0.01 T v

0.000000 0.0000
0.021053 1.3232
0.042105 �2.1272 �
0.063158 �1.0272 �
0.084211 0.4725
0.105263 �2.9307 �
0.126316 �2.1715 �
0.147368 �0.3765 �
0.168421 �3.6165 �
0.189474 �3.4973 �
0.210526 �1.2895 �
0.231579 �4.0646 �
0.252632 �5.0110 �
0.273684 �2.4988 �
0.294737 �4.1467 �
0.315789 �6.4363 �
0.336842 �4.4226 �
0.357895 �4.0616 �
0.378947 �6.7690 �
0.400000 �6.9872 �
inward flow below the crystal–melt interface, as reflected
in Table 5. When we increase Bx = 0.10 T, the RMF has
a much more pronounced effect with a small clockwise cir-
culation near r = 1 and f = �1. The magnitude of the
radial velocity just below the crystal–melt interface is fur-
ther increased as reflected in Table 5.

Yang (2006) presented the azimuthal velocity and
meridional streamfunction corresponding to 5%, 50%
and 90% growth for Bst = 0.5 T with Bx = 0.01 T,
0.05 T and 0.10 T and for Bst = 1.0 T with Bx = 0.01 T,
0.05 T and 0.10 T. Yang (2006) found (1) for a given
growth rate and RMF, the driving mechanisms for the
melt-depletion flow and electromagnetic stirring are con-
stant while the buoyant convection decreases as growth
progresses so that the magnitude of the radially-inward
flow below the crystal–melt interface decreases as growth
progresses, (2) for a given steady magnetic field, increas-
ing the flux density of the RMF increases the magnitude
of the radially-inward flow, and (3) for a given RMF,
increasing the flux density of the steady magnetic field
decreases the magnitude of the radially-inward flow
because the steady field provides an electromagnetic
damping of the radial component of flow.

5. Conclusions

An externally-applied RMF alone would induce flow in
a meridional plane which consists of a counterclockwise
circulation in the upper half of the melt below the crys-
tal–melt and encapsulant–melt interfaces and a clockwise
circulation in the lower half of the melt. Therefore, the flow
induced by the RMF augments the radially-inward flow
below the crystal–melt interface due to both the melt-deple-
tion flow and buoyant convection. For a given growth rate
; f ¼ 0:9999; t ¼ 40:46Þ versus r when 50% of the crystal has grown for

�
r ðr; 0:9999; 40:46Þ for Bx = 0.05 T v�r ðr; 0:9999; 40:46Þ for Bx = 0.10 T

0.0000 0.0000
1.3226 1.3124
2.1283 �2.1449
1.0290 �1.0561
0.4700 0.4316
2.9338 �2.9799
2.1754 �2.2336
0.3813 �0.4534
3.6221 �3.7050
3.5039 �3.6020
1.2973 �1.4141
4.0735 �4.2069
5.0212 �5.1752
2.5108 �2.6911
4.1604 �4.3669
6.4521 �6.6882
4.4408 �4.7149
4.0825 �4.3986
6.7930 �7.1546
7.0150 �7.4320
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and RMF, the driving mechanisms for the melt-depletion
flow and electromagnetic stirring are constant while the
buoyant convection decreases as growth progresses so that
the magnitude of the radially-inward flow below the crys-
tal–melt interface decreases as growth progresses. For a
given steady magnetic field, increasing the flux density of
the RMF increases the magnitude of the radially-inward
flow. For a given RMF, increasing the flux density of the
steady magnetic field decreases the magnitude of the radi-
ally-inward flow because the steady field provides an elec-
tromagnetic damping of the radial component of flow.
The addition of the RMF may be beneficial for reducing
segregation in the crystal because it may help convect the
dopant away from the crystal–melt interface.
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